首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5397篇
  免费   1120篇
  国内免费   773篇
测绘学   48篇
大气科学   22篇
地球物理   1880篇
地质学   2028篇
海洋学   2250篇
天文学   15篇
综合类   201篇
自然地理   846篇
  2024年   10篇
  2023年   63篇
  2022年   115篇
  2021年   206篇
  2020年   250篇
  2019年   277篇
  2018年   249篇
  2017年   230篇
  2016年   240篇
  2015年   241篇
  2014年   308篇
  2013年   437篇
  2012年   262篇
  2011年   334篇
  2010年   292篇
  2009年   342篇
  2008年   412篇
  2007年   360篇
  2006年   398篇
  2005年   255篇
  2004年   275篇
  2003年   266篇
  2002年   188篇
  2001年   189篇
  2000年   141篇
  1999年   147篇
  1998年   106篇
  1997年   105篇
  1996年   80篇
  1995年   72篇
  1994年   66篇
  1993年   72篇
  1992年   64篇
  1991年   44篇
  1990年   48篇
  1989年   29篇
  1988年   17篇
  1987年   12篇
  1986年   8篇
  1985年   22篇
  1984年   16篇
  1983年   19篇
  1982年   8篇
  1981年   10篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有7290条查询结果,搜索用时 15 毫秒
51.
52.
Beavers, primarily through the building of dams, can deliver significant geomorphic modifications and result in changes to nutrient and sediment fluxes. Research is required to understand the implications and possible benefits of widespread beaver reintroduction across Europe. This study surveyed sediment depth, extent and carbon/nitrogen content in a sequence of beaver pond and dam structures in South West England, where a pair of Eurasian beavers (Castor fiber) were introduced to a controlled 1.8 ha site in 2011. Results showed that the 13 beaver ponds subsequently created hold a total of 101.53 ± 16.24 t of sediment, equating to a normalised average of 71.40 ± 39.65 kg m2. The ponds also hold 15.90 ± 2.50 t of carbon and 0.91 ± 0.15 t of nitrogen within the accumulated pond sediment. The size of beaver pond appeared to be the main control over sediment storage, with larger ponds holding a greater mass of sediment per unit area. Furthermore, position within the site appeared to play a role with the upper‐middle ponds, nearest to the intensively‐farmed headwaters of the catchment, holding a greater amount of sediment. Carbon and nitrogen concentrations in ponds showed no clear trends, but were significantly higher than in stream bed sediment upstream of the site. We estimate that >70% of sediment in the ponds is sourced from the intensively managed grassland catchment upstream, with the remainder from in situ redistribution by beaver activity. While further research is required into the long‐term storage and nutrient cycling within beaver ponds, results indicate that beaver ponds may help to mitigate the negative off‐site impacts of accelerated soil erosion and diffuse pollution from agriculturally dominated landscapes such as the intensively managed grassland in this study. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
53.
Managed aquifer recharge is an effective method for utilizing excess flood flows, but clogging of porous media is a limiting factor in the implementation of this water storage technique. In recent years, much research on the physical clogging of porous media during artificial recharge has been conducted. However, the understanding of clogging due to silt‐sized suspended solids (SS) is still inadequate, especially under varying physical conditions. Here, we subjected sand columns to controlled rates of flow and SS suspensions to investigate the influence of media size, SS size, SS concentration, and flow velocity on the clogging of porous media by silt‐sized SS. The results show that the diameter ratio of SS particles to sand grains is the dominant factor influencing the position of physical clogging. As pore velocity increased, the mobility of silt‐sized SS was enhanced and retention in the porous media decreased noticeably. The spatial retention profiles in the porous media were found to vary greatly at different flow velocities. The SS concentration of the infiltrating suspension also dramatically influenced the mobility and deposition of silt‐sized SS particles, such that high concentrations accelerated the clogging process. As the different physical factors changed, the breakthrough curves and retention profiles of silt‐sized SS particles changed obviously and the mechanisms of retention differed. On the whole, clogging position is mainly determined by particle size ratio, but clogging rate is dominated by a variety of factors including particle size ratio, SS concentration, and flow velocity.  相似文献   
54.
55.
The long‐term evolution of channel longitudinal profiles within drainage basins is partly determined by the relative balance of hillslope sediment supply to channels and the evacuation of channel sediment. However, the lack of theoretical understanding of the physical processes of hillslope–channel coupling makes it challenging to determine whether hillslope sediment supply or channel sediment evacuation dominates over different timescales and how this balance affects bed elevation locally along the longitudinal profile. In this paper, we develop a framework for inferring the relative dominance of hillslope sediment supply to the channel versus channel sediment evacuation, over a range of temporal and spatial scales. The framework combines distinct local flow distributions on hillslopes and in the channel with surface grain‐size distributions. We use these to compute local hydraulic stresses at various hillslope‐channel coupling locations within the Walnut Gulch Experimental Watershed (WGEW) in southeast Arizona, USA. These stresses are then assessed as a local net balance of geomorphic work between hillslopes and channel for a range of flow conditions generalizing decadal historical records. Our analysis reveals that, although the magnitude of hydraulic stress in the channel is consistently higher than that on hillslopes, the product of stress magnitude and frequency results in a close balance between hillslope supply and channel evacuation for the most frequent flows. Only at less frequent, high‐magnitude flows do channel hydraulic stresses exceed those on hillslopes, and channel evacuation dominates the net balance. This result suggests that WGEW exists mostly (~50% of the time) in an equilibrium condition of sediment balance between hillslopes and channels, which helps to explain the observed straight longitudinal profile. We illustrate how this balance can be upset by climate changes that differentially affect relative flow regimes on slopes and in channels. Such changes can push the long profile into a convex or concave condition. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
56.
57.
The long-term average annual soil loss (A) and sediment yield (SY) in a tropical monsoon-dominated river basin in the southern Western Ghats, India (Muthirapuzha River Basin, MRB; area: 271.75 km2), were predicted by coupling the Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratio (SDR) models. Moreover, the study also delineated soil erosion risk zones based on the soil erosion potential index (SEPI) using the analytic hierarchy process (AHP) technique. Mean A of the basin is 14.36 t ha?1 year?1, while mean SY is only 3.65 t ha?1 year?1. Although the land use/land cover types with human interference show relatively lower A compared to natural vegetation, their higher SDR values reflect the significance of anthropogenic activities in accelerated soil erosion. The soil erosion risk in the MRB is strongly controlled by slope, land use/land cover and relative relief, compared to geomorphology, drainage density, stream frequency and lineament frequency.  相似文献   
58.
The assessment of sediment yield from reservoir siltation requires knowledge of the reservoir's sediment trap efficiency (TE). Widely used approaches for the estimation of the long‐term mean TE rely on the ratio of the reservoir's storage capacity (C) to its catchment size (A) or mean annual inflow (I). These approaches have been developed from a limited number of reservoirs (N ≤ 40), most of them located in temperate climate regions. Their general applicability to reservoirs receiving highly variable runoff such as in semi‐arid areas has been questioned. Here, we examine the effect of ephemeral inflow on the TE of 10 small (≤ 280 × 103 m3), intermittently dry reservoirs located in the Kruger National Park. Fieldwork was conducted to determine the storage capacity of the reservoir basins. The frequency and magnitude of spillage events was simulated with the daily time step Pitman rainfall–runoff model. Different runoff scenarios were established to cope with uncertainties arising from the lack of runoff records and imperfect input data. Scenarios for the relationship between water and sediment discharge were created based on sediment rating curves. Taking into account uncertainties in hydrological modelling, uncertainties of mean TE estimates, calculated from all scenarios (N = 9), are moderate, ranging from ±6 to ±11% at the 95% confidence level. By comparison, estimating TE from the storage capacity to catchment area (C/A) ratio induces high uncertainty (ranges of 35 to 65%), but this uncertainty can be confined (15 to 33%) when the latter approach is combined with hydrological modelling. Established methods relying on the storage capacity to mean annual inflow (C/I) ratio most probably lead to an overestimation of the TE for the investigated reservoirs. The approach presented here may be used instead to estimate the TE of small, intermittently dry reservoirs in semi‐arid climate regions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
59.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
60.
The present study demonstrates a spatially distributed application of a field‐scale annual soil loss model, the modified‐MMF (MMMF), to a large watershed using hydrological routing techniques, remote sensing data and geospatial technologies. In this study, the MMMF model is implemented after incorporating the corrections suggested in recent literature along with appropriate modifications of the model to suit the agro‐climatological conditions prevailing in most parts of India. Sensitivity analysis carried out through an Average Linear Sensitivity approach indicates that the model outputs are highly sensitive to soil moisture (MS), bulk density (BD), effective hydraulic depth (EHD), ground cover (GC) and settling velocity for clay (VSc). During calibration and validation, the performance evaluation statistics are mostly in the range of very good to satisfactory for both runoff and soil loss at the watershed outlet. Even spatial validation of the results of intermediate processes in the water phase and the sediment phase, although qualitative, seems to be reasonable and rational. Furthermore, the soil erosion severity analysis for different land‐uses existing in the watershed indicates that about 90% of the watershed area, especially that occupied by agricultural lands, is vulnerable to the long‐term effects of soil erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号